
AD-A241 695,,I!,,i liii ill lii I I
ANNUAL REPORT

VOLUME 4

TASK 4: SOFTWARE DEVELOPMENT

REPORT NO. AR-0142-91-002

September 24. 1991

GUIDANCE, NAVIGATION AND CONTROL

DIGITAL EMULATION TECHNOLOGY LABORATORY

Contract No. DASG60-89--C--0142

Sponsored By

The United States Army Strategic Defense Command

0

COMPUTER ENGINEERING RESEARCH LABORATORY

Georgia Institute of Technology

Atlanta, Georgia 30322-0540

Contract Data Requirements List Item A0Q5

Period Covered: EY-l

Type Report: Annual

91-12529!11!11 !i l!/ Ili I!! 11

UNCLASSIFIED

Form Approved

REPORT DOCUMENTATIO N PAGE [Orm Npo 0;OL 01

Is REPORT SECURITY CLASS;FIA(TION lb RESTRICTIVE MARKINGS

Unclassified
28 SECURII f CLASSIFICATION AUTHORITy 3 DISTRIBUTION /AVAILABILITY OF REPORT

I I)Approved for public release; distributionl
2b' DECLASSICAT ION I DOWNGRADING SCHEDULi is unlimited

2) continued on reverse side
4 PERFORMi G ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBFR(S)

AR-0142-91-002

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
School of Electrical Eng. (If applicable)

Georgia Tech U.S. Army Strategic D~efense Command
6c ADDRESS (City, State, and Zip Code) 7b ADDRESS (City, State, and ZIP Code)

Atlanta, Georgia 30332 P.O. Box 1500

Huntsville, AL 35807-3801

Fla NANIF OF FUNDING /SPONSORING I bOFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATI ION I f anr-lo ! I

~FI~ESS(W75~Can7P~dCF'110 DASG6O-89-C-0 142
Sc ADDRE SS(City. State, and ZIP Code) 10 SOURCE Or FUNDING NUMBERS

PROGRAM PROJECT_ TASK IWORK' UNIT
ELEMENT NO NO NO ACCESSION tiO

1 I I TLE (,nclude Security Claiificaton)

Guidance, Navigation and Control Digital Emulation Technology Laboratory
Volume 4 (Unclassified)

12 PERSONAL AUTHOR(S)

C. 0. Alford, Wei Siong Tan, R. Indaheng, J. Lie, M. Alibakhsh
I1Ja TYPE or REPORT ig"3 TIME COVERED I a flfL E OF REP'ORT t~* ~.ih ~)j~PAGE COUNT

Annual I FROM9/28/90 To9/27J9I 9/27/91 24
10; SUIrrL!MENTARY NOTATION

17 COSATI CODES 1 SUBJECT TERMS (Contmnue on reverse if necetsary and identify by block numb.')

riELD GROUP SUB-GROUP

19 ABSTRACT (Continue on reverse if necessary and identify by bloc4 number)

I. PF? Software 4. Ada Development Strategy
1.1 Introduction 4. I Introduction
1.2 Ccmpileis 4.2 Compilation Methodology
1.3 Utilities and Support Engironment 4.3 PFP Ada Tasking Mechanisn:
1.4 Planned Enhancement 4.4 Ada Examples

2. PFP Host conversion to SPARC station 4.5 D-iplopment Plan
2. 1 Introduction 5. Integrated Parallel Programming
2.2 Plan of Attack Framework
2.3 Development Plan 5.1 User Interface

3. Sequencer Upgrade 5.2 Compilation and Execution
3.1 Introduction 5.3 Operating and Monitoring
3.2 Progress System

(continued on opposite side)

20 DISTRIPUTION/AVAILABILITY OF ABSTRACT 121 ABSTRACT SECURITY CLASSIFICATION

rj UNCLASSIFIE DUNLIMITED 01 SAME AS RPT 0j DTIC USERS Unclassi fied
22a NAME OF RESPONSIBLE INDIVIDUAl 2"b TLiZ7;iNt 7hiC,'ie C Aea C eiic F FICE SYMBOL

DD rorm 1473, JUN 86 Previous edifiont are obsolete SECURITY CLASSIFICATION OF THIS Pb.G

UNCLASSIFIED

Security Class-ficaton of this page

Distribution statement continued
2) This material may be reproduced by or for the U.S, Government pursuant to tile copy

license under the clause at DFARS252.227-7013, October 1988. U
Abstract (Continued)

5.4 Database and Tool Integration

5.5 Development Strategy
5.6 Technologie3 for Parallel Programming Environments
5.7 Summary I

6. GT-EP Software
6.1 Pascal Compiler
6.2 C Compiler I
6.3 Ada Compiler
6.4 Object Code
6.5 Linker/Loader

6.6 Library
6.1 Run-time Kernel
6.8 Host Utilities
A - Interaictive: 2rcgr.mz 1
6.10 Sun Host

6.11 Hardware Diagnostic
6.12 Software Debugger

6.13 Development Status

U

I
I
I
I
I

UNCLASSIFIED _1TI i i fication o f-this page

I

TABLE OF CONTENTS

1. PFP Software .. 1
I.I. Introduction .. 1
1.2. Com pilers .. I

1.2.1. C .. 1
1.2.2. A da .. 2

1.3. Utilities and Support Environment .. 2
1.3.1.PFP M akefile ... 2
1.3.2.Fortran to C translator .. 2
1.3.3.Fortran to Ada syntax translator ... 2
1.3.4.Device Drivers .. 3
1.3.5.Kernel Support ... 3

1.4. Planned Enhancement 3
1.4. l.PFP Makefile 3
1.4.2.Next generation C compiler .. 3

2. PFP Host conversion to SPARCstation 4
2.1. Introduction .. 4
2.2. Plan of Attack 4

2.2. 1. Hardware Interface .. 4
2.2.2. Device driver conversion .. 5
2.2.3. Compiler conversion ... 6
2.2.4. Utilities conversion .. 6

2.3. Development Plan .. 6

3. Ada Development Strategy 7
3.1. Introduction ... 7
32.. Compilation Methodology ... 7
3.3. PFP Ada Tasking Mechanism ... 8
3.4. Ada Exam ples ... 9
3.5. Development Plan .. 9

4. Integrated Parallel Programming Framework 13
4.1. User Interface ... 13
4.2. Compilation and Execution ... 13
4.3. Operating and Monitoring System .. 14
4.4. Database and Tool Integration ... 14
4.5. Development Strategy ... 14

4.5.1. Matrix-X Integration Plan .. 14
4.5.2. Deveiopi.ien" Schedule ... 15

4.6. Technologies for Parallel Programming Ej.oironmers's 15
4.7. Sum m ary ... 16

4.7. 1. Parallelism and Application Domains 16
4.7.2. Performance Evaluation and Improvement. 16

a. GT-EP Software .. 18
5.1. Pascal Com piler ... 18

5.1. 1. Compiler Features ... 18

U
5.1.1.1. Data Types ... 18 3
5.1.1.2. Expressions .. 18

5.1.1.2.1. Arithmetic Operators ... 18
5.1.1.2.2. Boolean Operators ... 18
5.i..2... M ath functions .. 18
5.1.1.2.4. Assembly Instructions 18

5.1.2. Compiler M akeup 19
5.1.3. Command Line.. 19

5.2. C Compiler .. 20
5.3. A da Com piler 21
5.4. Object Code ... 21
5.5. LinkerLoader ... 21
5.6. Library ... 21
5.7. Run-time Kernel ... 21
5.8, Host Utilities 21

5.9. Interactive Programs 22
5.10. Sun Host ... 22 3
5.11. Hardware Diagnostic .. 22
5.12. Software Debugger 22

5.13. Development Status .. 22 !

I

I
U
I
I
I
!
U
I
I

1. PFP Software

1.1. Introduction

Highly parallel architectures offer opportunities for significant improvements in program

execution speeds and reliability. However, these opportunities cannot be realized unless effective

program development tools are available.

A good Ada programming environment requires an operating system technology for effi-

cient performance execution of parallel programs on different target parallel machines. Here, we

have developed a configurable and portable operating system kernel presenting a "library" of prim-

itives used by the programmer. Portability is essential in light of the multi-CPU nature of any PFP

machine, which may contain both special-purpose processors, such as FPP and FPX processor

boards, and general-purpose processors like the Intel 386/486, and the Intel 860 processor boards.

Henceforth, we have developed C compilers, linkers, loaders, libraries and special-pur-

pose packages for inter-processor communication and coordination on the target parallel machine

that will aid in the development cf software for our PFP. The C compilers provide efficient run-

time system constructs for effective utilization of the underlying capability of hardware resources.

Due to the special-purpose nature of the target hardware, we have been designing and im-

plementing a variety of tools for hardware use, including low-level device drivers, system moni-

toring and configuration software, etc. In addition, significant efforts have been expended on facil-

itating system installation, by use of Unix Makefiles. The environment is structured as a collection

of tools sharing a common information store, called the abstract information representation.

The current PFP environment and the associated PFP configurable kernal has supported

the development of several real-time applications:

a Satellite Attitude Control Simulation

a 3-DOF Missile Simulation

a Multiple Threat/KEW Interceptor Simulation enumerate (EXOSIM)

1.2. Compilers

1.2.1. C

Current FPP/FPX compiler is fully functional and has successfully compiled and run EX-

OSIM I Boost phdse an, FYOSIM II Terminal Phase. A new loader developed by Steve Wachtel

has been installed and run succesfully. A number of bugs discovered during the development of

the EXOSIM simulation have been fixed. The following describes some the bug fixes.

U
The problem of comparing two operands where the left side operand is an array variable 3

and the right hand side is a math operation. i.e. xli] > a + b has been fixed. Previously, when the

left side of the comparison was an array type with indexing, the compiler first evaluated the right

side and did not store the result in the temporary location. When it finished computing the left side

index, the compiler assumed the previous result was still in the pipeline which is an incorrect as-

sumption.

Tne compiler stack handling routine has been fixed to handle a function call with a division

operation in the parameter list. i.e. x = func(a/b);

The FPX compiler is now capable of handling true double precision input output. 3
The FPX compiler produced garbage value when undeflow is detected and zero when over-

flow is detected. The compiler has been fixed to produce zero when underflow is detected and inf

if overflow is detected.

In addition, a MOD function has been built-in to the compiler and it is currently fully opera-tional.!

1,2-2. Ada 3
See section 3 for details

1.3. Utilities and Support Environment I
1.3.1.PFP Makefile

A fully customized "make" utility has been written to automate the process of producing

executables for all the processors (FPX, FPP, 386,486, 860). Regardless of the programming lan-

guage used, the source code is directed to an appropriate translator to produce C code, which is 3
then fed into an appropriate compiler to generate the target object code for execution. Currently,

the programming languages supported are Ada, Pascal, C, and Fortran. A crossbar compiler is used 3
to compile the specification of a communication configuration into interconnection patterns be-

tween processing elements. 3
1.32.Fortran to C translator

The Fortran to C translator from AT&T has been modified to recognize the PFP interface I
primitives. It is a fully functional translator which has been incorporated into the front-end PFP

software development environment. 1
133.Fortran to Ada syntax translator

Originally developed by Steve Wachtel to translate Fortran code to C and modified by Rani I
Indaheng and Jackson Lie to produce Ada code. The current version uses a direct one to one map-

2 I

ping syntax translation scheme to produce Ada code from Fortran. It does not fully support all the

advanced Ada features yet. Improvement will be made to support all Ada features in the future.

1.3.4 Device Drivers

The device drivers do not require any new development work at this time. The current driv-

ers will be maintained and upgraded as necessary. They are currently sufficient to run EXOSIM

simulation.

1.3.5.Kernel Support

No new development work is expected. Maintenance and upgrade will be provided on an

as needed basis.

1.4. Planned Enhancement

1.4.1.PFP Makefile

A fully functional Fortran to Ada syntax translator, and the front-end Ada compiler and

the intermediate Ada to C code generator will be ported to Sun-386 and added to the "make" utility.

1.4 2 Next generation C compiler

A next generation FPP/FPX C compiler is being developed based on the GNU C compiler

provided by the Free Software Foundation. A new assembler is also being developed for this next

generation FPP/FPX C compiler. This new generation C compiler will produce highly optimized

code.

. ... u m . . m w u mkmMmw a •3

I
2. PFP Host conversion to SPARCstation

2.1. Introduction

The prototype PFP machine used Intel processors and an Intel host which ran a proprietary

operating system which was not in common use. As computer workstation technology advanced

to include virtual memory, networking, and windowed user interfaces it became desirable to in-

clude these features in a PFP host. The Sun 386i was selected since it supported these features and

it provided backward compatibility with much of the Intel software. Workstation technology has

continued to advance with faster workstations available, obsoleting the older workstations. A fast-

er host improves compilation time, and allows better presentations of the data as the real-time pro-

grams are run on the PFP.

Consideration for selecting a new workstation are: I
1) speed (cpu, disk, memory),

2) workstation cost,

3) easy of hardware interface to the PFP

4) ease oi Po" -", the software from the existing host 3
5) compatibility with industry standards

The Sun SparcStation series of workstations fit will with the above criteria. The Sun Sparc-

Stations family also has several different variations which are all compatible, allowing different

cost verses options setups to be selected.

2.2. Plan of Attack I
The conversion of the host to a Sun SparcStation can be broken into several steps:

converting the hardware interface, writing the necessary UNIX device drivers to work with the new I
hardware interface, converting the processor compilers, and converting the various PFP support

utilities. The SparcStation uses little endian byte ordering, and the Sun 386i uses big endian byte 3
ordering. This i expected to be the major hurdle in porting the software from the Sun 386i to the

SparcStation. 3
2.2.1. Hardware Interface

The Sun 386i was interface the the Multibus I based PFP by purchasing a PC-AT bus to

Multibus I interface card from the BIT-3 corporation. This card plugged into the AT bus on the

Sun 386i and into the PFP master repeater card cage. The card allows a direct memory map of the

Sun's memory space into the the master repeater's address space.

4

The Sun SparcStation does not have a PC-AT bus. Instead, the SparcStation uses a bus

referred to as the S-bus. The S-bus is a 32 bit data, 32 bit address, high speed memory mapped

bus suitable for attaching high speed peripherals to the SparcStation. BIT-3 manufactures a S-bus

to Multibus I interface, which will be used with the SparcStation port. The BIT-3 S-bus card is

very similar to the older PC-AT bus interface from a software perspective, simplifying the software

port to the Sun 4 SparcStation.

2.2-2. Device driver conversion

The new host will require device drivers to interface to the PFP. Device drivers are the code

that becomes part of the operating system, and handles the low level interface to the BIT-3 S-bus

to Multibus card. These device drivers provide the necessary code to transparently handle the

handshake messages necessary for the Bit-3 interface, and higher level support to allow each pro-

cessor to appear a unique UNIX device.

The device driver code can be separated into three layers (see Figure 1 below). The lowest

FPP driver 80386 driver X-bar driver Seq driver

Array Repeater Control

I
BIT 3 Harware control

Figure 1. PFP Sun Host Device Drive Hierarchy

layer deals directly with the BIT-3 card and handles the register level interface with the BIT-3

card. The middle layer handles the details of the PFP MultiBus repeater array (reference

CERL002-0761-120.1). The highest level layer handles the details of the interface with the spe-

cific elements within the PFP, such as FPP processors, FPX processors, 80386 processors, the

crossbar(s), and the sequencer(s).

Since the PFP's structure does not change with a conversion to a new host, the types of pro-

cessors, and the sequencer and crossbar, and the details of the PFP repeater array are unaffected

5

U
by switching to a Sun SparcStation host. Thus, the only layer which is effected by the host conver-

sion is the bottom most layer.

Device driver conversion will also be effected by the revision level of the UNIX based Sun

Operating System. The SparcStation uses SunOS 4.1.1 while the Sun 386i uses an eari;er version,

SunOS 4.0.2. These versions have minor differences in how the device drivers are written 3

2 23. Compiler conversion I
The compiler source code will be copied directly from the Sun 386, to the Sun SparcSta-

tion. The source code for the compilers will then be compiled on the SparcStation, and used to

generate a series of test programs. These test programs will also be compiled on the Sun 386i.

The object code and binary code resulting from the compilation will then be compared to determine I
whether any porting problems exists. The m, .jority of the porting problems are expected to arise

from the differing byte order between the Sun 386i and the Sun SparcScation. 3
22.4. Utilities conversion 3

The utilities will be converted using the same strateg) as for the compiler conversion.

2.3. Development Plan I
To develop the system, a "mini-PFP" will be set up. This mini-PFP will be a one or two

processor version with all of the interfaces in place. This mini-PFP will be used to test the init al I
device drivers and the compilers ports. Final testing on a full PFP will be minimized to prevent

impact on the schedules of the various application and simulations that run on the PFER

The project will begin by purchasing a BIT-3 S-bus interface card and connecting up a test

setup on a sun SparcStation, The device driver work can proceed in parallel with the ,ompiler de-

velopment since the compilers can be run on a SparcStation, and the resulting code can be trans-

ferred over a network to a Sun 386 host, eliminating the need for a SparcStation to start the compiler 3
conversion. The actual order of work will depend on the availability of manpower for this effort.

I
U
i
I

6

3. Ada Development Strategy

3.1. Introduction

A commercially available validated Ada compiler has been incorporated into our front-end

Ada development environment. We licensed both the executable Ada front-end and the intermedi-

ate Ada to C generator sourre -ode from Irvine Compiler Corp. The current version of the Ada

front-end runs on Sun-3. Effc rt Lo port the Ada development environment to Sparcstation is under

wpy.

Since we are consistently converting codes written in Fortran to Ada, we are developing

a simple Fortran-to-Ada syntax translator that will allow us to automate this repetitive process.

As part of our Ada development environment, we are developing a PFP Ada tasking mech-

anism that will allow Ada tasks to run in parallel on any native machines with a validated Ada com-

piler. This mechanism will emulate the PFP inter processor communication sequencer, thus, pro-

viding software developers a capability of testing parallel programs on any naive machines before

porting the sam, programs with little or no modification to the PFP

3.2. Compilation Methodology

The Ada Compilation Methodology consists of three parts, as shown in Figure 2. The

front-end is a validated Ada compiler that reads in Ada code and produces the intermediate repre-

sen ition of the code.

The s-cond part of the Ada Compilation Methodology is the Ada-to-C generator. The in-

termediate code produced by the front-end is fed into the Ada-to-C generator to produce a C code.

The original code generator produces C code that is targeted for machines with eight bit Basic Ma-

chine Unit (the smallest addressable unit). Since our PFP BMU size is 32 bits, we modified the

codL generatoi source code to produce 32-bit C code.

In order to geierate a highly optimized C code, the Ada-to-C generator requires that the

configuration of the target machine be defined. We have obtained a copy of the configuration file

for Sun-386 from ICC and have modified it to our PFP configuration.

Finally, the last part is the PFP C compilers. They produce executable codes for either GT-

FPX, GT-FPP, GT-386, GT- 486, or GT-860 The FPP/FPX compiler is developed in house to

produce executable code that will run on the single precision FPP processor orthe double precision

FPX processor. The gcc compiler provided by the Thee Software Foundation is used to produce

executable code for 386 and 486 processors. Finally, we are in a process of modifying the gcc com-

piler to produce executable code for the 860 processor.

7

I
The effort to compile and translate Ada code to C code reduces not only our maintenance

cost by allowing us to maintain only the back-end C compilers, but also reduces the development

costs. All of the front-end compilers (including the front-end Fortran compiler) are commercially 3
available and validated compilers. These front-end compilers have been extensively tested in the

field by many other vendors.

A Fortran to C translator originally developed by Steve Wachtel has been modified by Rani

Indaheng and Jackson Lie to generate Ada code. The current version of our Fortran-to-Ada trans-

lator is capable of translating codes in Fortran syntax to Ada. It translates Fortran syntax one-to-

one to Ada syntax, and it only supports a subset of Ada rules. It does not take the advantage of

most of the advanced Ada features. However, at present time, we are satisfied with the Ada code 3
produced by this translator. Further enhancement will be added in the near future.

3.3. PFP Ada Tasking Mechanism I
The PFP Ada tasking mechanism consists of three parts, as shown on Figure 3. The first

one is the buffer package. Each task or process is assigned an input and an output buffers. To com- U
municate with other tasks, an Ada task sends a message to its output buffer and it does not need

to specify who the receiving task is. When the output buffer is full, the task will wait and poll until 3
the buffer is available, and then writes to it. Once the task finishes writing the message to the output

buffer, it can continue its execution. To receive a message from another task, it reads its input buffer 3
without any knowledge of who the sender is. In the case where the task is ready to receive a mes-

sage and the input buffer is empty, it will wait and poll until the buffer is not empty and then reads

the message from the buffer. Once it finishes reading the message, it is free to resume execution.

For each project, a user must write an inter-process communication (crossbar) map that

will provide the cormnunication pattern between tasks, In other words, the crossbar file will tell

the Ada sequencer emulator which tasks are sending messages to other tasks on a certain CPU

cycle. The inter-process communication file is a simple script-file that does not require a user to m
learn any new language or any new methodology. The file consists of two parts. The first one tells

the sequencer emulator which task is assigned to which processor (virtual processor). The second 3
part provides the information of who the sender is and who the receiver is. Below is an example

of a crossbar file. i
process-l is taskl.fpx on xO

process_2 is task_2.fpp on xl 3
process_3 is task_3.386 on x2

process_4 is task_4.486 on yO

loop

cycle process_1 -> process_2, process_3;

8

cycle process_2 -> process_3;

process_1 -> process_4;

The second part is the scanner package. This package will read and compile the specifica-

tion of a communication configuration defined in crossbar file into interconnection patterns be-

tween processing elements.

Finally, the inter-process communication package will emulate the PFP inter-process

communication sequencer and does the message transfer from the output buffer of the sending task

to the input buffer(s) of the receiving task(s) according to the communication configuration de-

fined in the crossbar file.

3.4. Ada Examples

We have developed an Ada parallel version of the EXOSIM boost phase to test the Ada

development environment. The steps that are involved are as follows.

We took the uni-processor version of the EXOSIM written in Fortran and broke it down

to twenty four separate modules. Each module was translated to C by the Fortran-to-C translator

from AT&T. We then took the C codes and compiled them using our FPP/FPX compiler. The ex-

ecutable codes were then tested module by module. Finally, we integrated all twenty four modules

and run them on PFP in parallel and in real-time.

Once the twenty four Fortran modules were running successfully on PFP, we translated the

Fortran codes to Ada, manually, and run them through the front-end Ada compiler and Ada-to-C

code generator. The C codes were then compiled using our FPP/FPX compiler and run them on

PFP in parallel and in real-time.

At present time, the size of the Ada version of the EXOSIM object codes is about fifty per-

cents larger, on the average, than the Fortran object codes. The speed of the Ada version of the

EXOSIM, however, is about thirty two percents faster than the Fortran version. Two main factors

constitute to this improvement. One is that the Ada programming language has more advanced

features that will allow one to write a more efficient code. Second, the intermediate Ada-to-C

code generator does a better job of producing better C codes.

3.5. Development Plan

Ada devlopment plan is shown on Figure 4.

U

'C I

I III F

____ ___ U I

.~I

0

~. -oI
oLLI

I.. I

a- -- - - - - - - - - - - -- - --- - - -- --

a ma

a ao

a ao

- -a-- - -

C661' Jutf i

U
Z661 '1 10 3

Z661 '1 (InftI ~I

Z661 'I I.dV - I

Z661 'I , I I

00

Z661 1Uf -

I

1661 '1 3,)InI

I

1661• -+ + ____ - _- ___

I

4. Integrated Parallel Programming Framework

Georgia Tech is devising an integrated parallel programming framework (IPPF) for the

development of software for the special purpose parallel processor architectures. The IPPF serves

as an entity for the integration of diverse hardware components and provides a consistent interface

for effective exploitation of hardware capabilities. The IPPF consists of four components: user in-

terface, compilation and execution, operating and monitoring system, and database and tool inte-

gration. The overall software architecture of the IPPF is shown in Figure 5.

4.1. User Interface

The conventional programming method uses direct text editing of program source code.

This mode of programming is still supported in the IPPF environment. However, the primary meth-

od of programming is through a block editor and block diagram editor. Using the block editor, the

user creates and defines basic functional programming blocks. Each functional block is repre-

sented by a graphical block diagram. Data flowing into and out of the block are represented by input

and output connection ports. The behavior of the block is represented by a self -contained code seg-

ment with receive commands for information flowing into the block and send commands for infor-

mation flowing out of the block. The block diagram editor allows a user to assemble predefined

functional blocks and connect the blocks into a higher level system of functional blocks. Using this

method, a complex application program can be graphically and hierarchically developed.

The configuration editor and monitoring specification allows a user to effectively control

hardware resources and specify specific monitoring information for an application run. The default

hardware configuration is automatically extracted from the application block diagram. Manual

configuration is only needed if optimization around a particular hardware configuration is desired.

A commercial package, namely Matrix-X, is used as the front end graphical block diagram

editor. An additional module Autocode is used to generate C and Ada source code for the designed

blocks. These packages will run on a SUN host running SUN's version of Unix operating system.

Matrix-X is a powerful, programmable, matrix calculator with a graphical interface. It is

capable of solving complex, large scale matrix problems in any engineering discipline. In addition

to matrix analysis functions, it provides a rich set of design and analysis functions for classical in-

put/output control and modern state-space control problems.

4.2. Compilation and Execution

Regardless of the form of user interface, either through block diagram editing or direct pro-

gram editing, the eventual output from the user interface is program source code. The source code

13

I
is directed to an appropriate compiler to generate the target object code for execution. The pro- 3
gramming languages supported are Ada, Pascal, C, and FORTRAN. A crossbar compiler is used

to compile the specification of a communication configuration into interconnection patterns be- 3
tween processing elements. Each processor type requires a separate compiler, linker, and loader.

Processor specific low level utilities are incorporated into the environment database. 3
4.3. Operating and Monitoring System

The operating system provides efficient run-time system constructs for effective utiliza-I

tion of the underlying capability of hardware resources. It provides a concise interface between

the various programming languages (Ada, C, Assembly language, etc.) and the underlying archi- 3
tecture of each type of processor element. It also provides a facility for exception handling and er-

ror recovery mechanisms. The operating system gives each processor element the ability to ex- -
ecute multiple tasks. This is especially important when the number of functional blocks exceeds

the number of available processor elements. U
The monitoring system provides a useful mechanism to obtain feedback from an applica-

tion run. It provides capability for a systematic display of application results and a structured facil- -
ity for real--time data collection. The monitoring system also serves as the interface for system de-

bugging. 3
4.4. Database and Tool Integration

The software database provides a repository for the block diagrams, configuration infor- U
mation, monitoring specification, language-specific package library, target-machine specific uti-

lities, operating system constructs, and monitoring systems. The database serves as an integration

tool for the other three components of the IPPF. A database interface provides constructs to create,

access, update, and display the information in the database. 3
4.5. Development Strategy m

4.5.1. Matrix-X Integration Hans

Matrix-X is used as a graphical front end to design the systems. The Autocode is used to 3
generate the C or Ada sourc . code based on the block diagram designs. These source modules are

then processed and the interface and interblock communication information is then updated to a

database. The information in the database is subsequently used to generate the necessary crossbar
code. The initial source modules are also modified in the proper manner to include the interproces-

sor communication calls. The programs are then compiled, loaded and executed in parallel on the
PFP.

14

4-5.2. Development Schedule

The development and integration of Matrix-X will be done in two phases. The first phase

will be completed for the C language sources, and the second phase will include the Ada version.

Initially Matrix-X will be moved to a SUN platform from the VAX stations. This is expected to

be completed approximately by the end of August 1991. The designing and development of the

crossbar code generator and the C source analyzer will immediately begin follcwing the successful

installation of the Matrix-X software on the SUN platform. The work on the Ada version will com-

mence following the successful development, testing and debugging of the initial C version.

4.6. Technologies for Parallel Programming Environments

The successful development of a PPE requires the following technologies:

> Language and compiler technology for the support of multiple models of

parallel programming (when explicitly describing parallelism) and for the

automatic or semi-automatic parallelization of programs. Here, we are us-

ing and developing Ada and C compilers, linkers, and loaders, enhanced

with libraries and special-purpose packages for inter-processor communi-

cation and coordination on the target parallel machine.

> For program generation, analysis, and improvement: programming envi-

ronment, database, and visualization technology for the representation,

sharing, and display of information about the parallel program, its execu-

tion environment, and its run-time performance. This is the PPE being de-

veloped in this research.

> Performance analysis, program specification techniques, and, perhaps, Ar-

tificial Intelligence technology (1) for performance modeling of the parallel

program, (2) for expression of relevant performance attributes of parallel

programs or of program invariants runtime not to be changed during per-

formance tuning, and (3) for relating models and measurements to actual
program code as well as for suggesting and making changes to such code.

Here, we will offer simple means of performance evaluation and program

visualization, coupled to a graphical interface used for program develop-

ment.

> Operating system technology for efficient performance monitoring and for

the efficient execution of parallel programs on different target parallel ma-

chines. Here, we have developed a configurable and portable operating sys-

tem kernel presenting a "library" of primitives used by the programmer.

15

I

Portability is essential in light of the multi-CPU nature of any PFP ma- -
chine, which may contain both special-purpose processors (such as the

FPP) and general-purpose processors like the Intel 386 or 860 boards. 3

4.7. Summary I

4.7.1. Parallelism and application domains. i
Highly parallel architectures offer opportunities for significant improvements in program

execution speeds and reliability. However, these opportunities cannot be realized unless effective I
program development tools are available. A parallel programming environment (PPE) differs

from conventional program development systems in several ways. 3
For the explicit expression of parallelism, the programming model presented to the pro-

grammer should address the specific properties of the programmer's application domain. For ex-

ample, in real-time simulations, low-level control functions are eaiiy described as statically de-

composed collections of communicating functional blocks. This suggests that a useful I
programming model is one that presents the functional (possibly replicated) building blocks in the

application using graphical descriptions. This is the approach we will pursue for the PPE being 3
constructed for the PFP, in conjunction with visual illustrations of the performance effects of such

decompositions. 3
More importantly, one of the environment's attributes will be its ability to exploit applica-

tion domain-specific knowledge for assistance in parallel programming. For example, when per- 3
forming resource allocation for PFP's real-time simulations (e.g., mapping functional blocks to

processors), the system will use built-in mapping functions, thereby removing from programmers

the responsibility of computing and enforcing such mappings.

4.72. Performance evaluation and improvement.

Since the primary objective of parallel computing is performance improvement, a PPE

must assist the programmer in gaining understanding of program performance on the target paral-

lel machine. This implies (1) that tools for program mo iitoring, performance evaluation or predic-

tion and for the visualization of performance information should be integral parts of the program- 3
ming system and (2) that programmers should be assisted in making changes to their parallel

applications in response to such evaluations or predictions - termed program tuning. Specifical-

ly, we will assume that the PPE should provide a general framework that makes effective use of

a wide variety of performance display, evaluation, and visualization tools.

16

0 7

200

L) Q.~C

...

.- cn4)) 0 0044

4p CA
2Q

C's x

C4)

.....-

4j Ib -

cma~

I
5. GT-EP Software 3

The GT-EP software development flowchart is shown in Figure 6. Each component is de-

scribed in the following sections. 1
5.1. Pascal Compiler

The GT-EP Pascal Compiler was developed to generate object codes for the Genesil multi-

chip simulation of the GT-EP processor. To minimize the development time, only a subset of stan-
dard Pascal is implemented. This document provides a brief description of the constructs sup- 3
ported by the compiler, the files that make up the compiler, and the command line to invoke the

compiler.

5.1.1. Compiler Features

5.,1.1. Data Types I
The compiler supports three basic data types: real, integer, and boolean. Real types are rep-

resented by 32-bit IEEE single precision floating point numbers and integer types are represented 3
by 25-bit signed magnitude fixed point numbers. Boolean false is represented by 0 and true by
non-zero. The compiler accepts arrays of reals and arrays of integers. No user-defined datatypes

are allowed. The pascal "type ..." construct is not supported.

5.1.1.2. Expressions 3
Arbitrary arithmetic and boolean expressions are supported. The supported operators for

these expressions are described in the following sections. 1
5.1.1.2.1. Arithmetic Operators

For real data types, the operators supported are +, -, *, and /. For integer data types, the 3
operators supported are +, -, *, or, and, shl, shr, rol, ror, and xor. Conversion operations supported

are trunc and round. 3
5.1.1.2.2. Boolean Operators

Boolean operators supported for both real and integer data types are >, <, >=, <=, and =. 3
Boolean operators for boolean data types are "and", and "or".

5.1.1.2.3. Math functions I
The math functions supported are sin, cos, asin, acos, tan, atan, In, exp, and sqrt.

5.1.1.2.4. Assembly Instructions

All the assembly instructions in the GT-VIAG and GT-VDAG programming model docu-

ments are generally supported by the compiler. The load instructions are implemented as proce-
dure calls and the store instructions are implemented as function calls.

I
18 I

5.12. Compiler Makeup

The following are the compiler source files:

arith.pas,

check.pas\

code.gen.pas\

compile.pas\

declare.pas\

exprsion.pas\

exprtree.pas\

fetch-tk.pas\

for-stat.pas\
global.pas\

hex_conv.pas\
ifwhile.pas\

init.pas\

io.pas\

lib.pas\

mainbody.pas\

procedur.pas\

stdproc.pas\

stdprocd.pas\

symbol-t.pas\

utility.pas

bfilter.pas

The top level file is compile.pas and bfilter.pas. Bfilter.pas is a standalone program. All

the other source files are used by compile.pas. The file global.pas contains all the definitions of

the global variables. Compile.pas receives a .pas file and produces a .fpp file.

The execution of bfilter.pas collapses all forward branch references in the .fpp file and pro-

duces a .ep file.

5.13. Command Line

To execute the compiler invoke

compiler <filename> [d]

19

I
The compiler automatically appends .pas to the filenm.'-e and expects an input file with that 3

extension. The optional d flag is used to direct the compiler to print out the tre- str-cture of the

compiled code.

The compiler produces a xxx.err file and a xxx.fpp file. If a compilation error is detected,

the compiler directs the user to the xxx.err file for a listing of the error message. The compiler scans 3
the xxx.pas input file and writes to the xxx.err file one statement at a time. If a syntax error is

detected, the compiler writes an error message to the xxx.err file and aborts the compilation pro-

cess. If the xxx.pas contains no syntax errors, the compiler simply generates a copy of the xxx.pas

file in the xxx.err file.

The object code is listed in the .fpp file written as a standard ASCII file. The format of the

file is listed in Appendix A. 3
To resolve forward branch reference, the following command line is used

bfilter <filename> 3
The program expects a file with .fpp extension and produces a file with .ep extension

A user document for the Pascal Compiler was generated and sent to Harris along with the I
compiler executable and source files. Both the PC-DOS and the Sun-Unix versions of the source

files were included. 3
The compiler that runs on the PC has been successfully ported to run on the SparcStation.

Some careful considerations were taken to ensure that only one version of the source files needs

to be maintained A file driven stream editor and a makefile are used to automatically convert tht,

Pascal source files to C source files and compile an executable image to run on the SparcStation.

Changes can now be made on the original source files and a Sun version can be produced vithout

the programmer's manual intervention. The same mechanism can be used to port the compiler to 3
the other Sun architectures.

The following functions were added to the Pascal Compiler: "xor", "and", "or", "shl",
"shr", "rol", "ror", and "not". The functions that need to be added is "trunc".

5.2. C Compiler

Basis Technology Corporation in Boston, Massachusett had signed a subcontract agree-

ment with Georgia Tech to develop a C compiler. The compiler will comply with the ANSI C stan-

dard. The C compiler will be based on i- "gcc" compiler front-end provided for by the Free Soft-

ware Foundation. Both the ANSI C and the GNU standard test suites will be used to verify the

compiler. The expected completion date for the compiler is February 1992.

20 I

5.3. Ada Compiier

Georgia Tech will jointly develop a 'validated Ada compiler' with Irvine Cumpiler Corpo-
ration for the GT-EP processor. Work on the compiler Is expected to start in Febuary, 1992 with

a completion date of January 1993.

The Ad compiler produces an intermediate C code which is compiled using a C compiler
to the target GT-EP object code. This approach significantly reduces the cost of providing a fully

validated compiler for the GT-FP processor. The Ervine Ada compiler currently support a wide

variety of target processors including the Sun and HP workstations, and the Intel i960 embedded

processors.

5.4. Object Code

The unix a.out standard binary file format will be used for the GT-EP object code. Current-
ly the Pascal compiler produces an ASCII file each line expressing the values of the 12 GT-EP

opcode fields. The compiler eventually will be modified to produce object code in the a.out binary
file format. The C compiler will also produce the object code in the a.out format.

5.5. Linker/Loader

The Linker/Loader combii.es multiple object files, resolves external references, produces
an execution file, and downloads programs to the GT-EP for execution.

5.6. Library

The library will contain standard rmath functions such as sin, cos, and other math functions

that are not directly supported by the GT-EP instruction set. It will eventually expand to include

optimized function such as those required to solve differential equations or to compute FFT effi-

ciently.

5.7. Run-time Kernel

The run-time kern -1 will include interrupt service routines, task scheduler, and communi-

cation prinitives. It will also include functiors to perform system tests and perform services for
user programs which require kernel priviledge. The run-time kernel will be responsible for servic-

ing and scher,1ling real-time 1/0 functions.

5.8. Host Utilities

The Host Utilities will include basic routines for the GT-EP processor to communicate

with the host.

21

U
5.9. Interactive Programs

Interactive programs serve as a gateway between the users and the GT-EP processor. They

run on the host and communicate with the GT-EP processor using the basic host utilities.

5.10. Sun Host

The host processor for the GT-EP processor will be a SPARC based Sun workstation.

5.11. Hardware Diagnostic I
The hardware diagnostic software checks all the functional modules of the GT-EP and re-

port the status of each module. This is an absolutely necessary first step to verify that hardware I
is functioning properly before any application software is run.

5.12. Software Debugger

As the complexity of the application programs increases, it becomes necessary to include 3
a software debugger to speed up debugging process. Basis Technology Corporation will follow

the C compiler development with the development of a software debugger for the GT-EP proces-

sor. The development effort is expected to take six to nine months after the completion of the C

compiler.

5.13. Development Status

The Pascal Compiler was used to compile programs for the GT-EP evaluation test board.

Three small test programs had been successfully run on the GT-EP processor. Work is in progress

to integrate the GT-EP evaluation test board with the Sun host.

The contract with the Basis Technology Corporation to develop with the C compiler has

been signed. The development effort is now in progress.

The EXOSIM boost phase had been converted Ada to run on the Parallel Function Proces-

sor. The Ada methodology for the Parallel Function Processor is the same as that for the GT-EP

processor. It is expected that the GT-EP development effort will greatly benefit from the Ada de-

velopment which had already under way for the Parallel Function Processor. Contract negotiation

with Ervine to provide a fully validated Ada compiler for the GT-EP processor is in p ogress.

I
I
I

22

S I
U I1~

Cu
L.

S I
- U

.5

- 5 6er~
- * . *

4 * I S
4 - S I -~

I~ I I~ ~ -

I g *' - '*~ Cu'

* I S I Q

-A _ _

t-----.**.* 5
I S 0
I S

~ ~ I;

,~ S ~

.~ ~ :~
S L.
I Cu

S a
-A

- A 0
C,,

-
M

~.I ~
I 6

I I Cu
Cu ~ cJ

I I V
Cu ~ I ~ I

4 .~ a.-..-
I ~ .. I~ **~'lO~~ =

Cu :~ e *''~
:5 U~ ~
:5

~-- .~I

0

0.
2

I-
* 0

~ ~
* m:

- 4 -~

=

- i
* 0 .

* I

